
© CareerCup.com

Books by
Gayle

CRACKING THE

CODING
S K I L L S

1 Listen
Pay very close attention to any info in the 
problem description. You probably need it 
all for an optimal algorithm.

2 Example
Most examples are too small or are special 
cases. Debug your example. Is there any way 
it’s a special case? Is it big enough?

3 Brute Force
Get a brute-force solution as soon as possible. Don’t 
worry about developing an efficient algorithm 
yet. State a naive algorithm and its runtime, then 
optimize from there. Don’t code yet though!

4 Optimize
Walk through your brute force with BUD 
optimization or try some of these ideas:

 � Look for any unused info. You usually need all 
the information in a problem. 

 � Solve it manually on an example, then reverse 
engineer your thought process. How did you 
solve it?

 � Solve it “incorrectly” and then think about why 
the algorithm fails. Can you fix those issues?

 � Make a time vs. space tradeoff. Hash tables are 
especially useful!

5 Walk Through
Now that you have an optimal solution, walk 
through your approach in detail. Make sure you 
understand each detail before you start coding.

6 Implement
Your goal is to write beautiful code. 
Modularize your code from the beginning 
and refactor to clean up anything that isn’t 
beautiful.

7 Test
Test in this order:

1. Conceptual test. Walk through your code 
like you would for a detailed code review.

2. Unusual or non-standard code.

3. Hot spots, like arithmetic and null nodes.

4. Small test cases. It’s much faster than a big 
test case and just as effective.

5. Special cases and edge cases.

And when you find bugs, fix them carefully!

BUD Optimization
Bottlenecks

Unnecessary Work

Duplicated Work
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Best Conceivable 
Runtime (BCR)
BCR is the runtime you know you 
can’t beat. For example, if asked 
to compute the intersection of 
two sets, you know you can’t beat 
O(|A|+|B|). 

5 Approaches
 � BUD: Look for bottlenecks, 

unnecessary work, 
duplicated work.

 � DIY: Do It Yourself

 � Simplify & Generalize: 
Solve a simpler version.

 � Base Case & Build: Solve for 
the base cases then build 
from there.

 � Data Structure Brainstorm: 
Try various data structures.

Do not…
 � Do not ignore information given. Info is there for a reason.

 � Do not try to solve problems in your head. Use an example!

 � Do not push through code when confused. Stop and think!

 � Do not dive into code without interviewer “sign off.”

What You Need To Know

1 Data Structures: Hash Tables, Linked Lists, Stacks, Queues, 
Trees, Tries, Graphs, Vectors, Heaps.

2 Algorithms: Quick Sort, Merge Sort, Binary Search, Breadth-
First Search, Depth-First Search.

3 Concepts: Big-O Time, Big-O Space, Recursion & Memoization, 
Probability, Bit Manipulation.

Exercises:

 � Implement data structures & algorithms from scratch.

 � Prove to yourself the runtime of the major algorithms.


