
© CareerCup.com

Books by
Gayle

CRACKING THE

CODING
S K I L L S

1 Listen
Pay very close attention to any info in the
problem description. You probably need it
all for an optimal algorithm.

2 Example
Most examples are too small or are special
cases. Debug your example. Is there any way
it’s a special case? Is it big enough?

3 Brute Force
Get a brute-force solution as soon as possible. Don’t
worry about developing an efficient algorithm
yet. State a naive algorithm and its runtime, then
optimize from there. Don’t code yet though!

4 Optimize
Walk through your brute force with BUD
optimization or try some of these ideas:

 � Look for any unused info. You usually need all
the information in a problem.

 � Solve it manually on an example, then reverse
engineer your thought process. How did you
solve it?

 � Solve it “incorrectly” and then think about why
the algorithm fails. Can you fix those issues?

 � Make a time vs. space tradeoff. Hash tables are
especially useful!

5 Walk Through
Now that you have an optimal solution, walk
through your approach in detail. Make sure you
understand each detail before you start coding.

6 Implement
Your goal is to write beautiful code.
Modularize your code from the beginning
and refactor to clean up anything that isn’t
beautiful.

7 Test
Test in this order:

1. Conceptual test. Walk through your code
like you would for a detailed code review.

2. Unusual or non-standard code.

3. Hot spots, like arithmetic and null nodes.

4. Small test cases. It’s much faster than a big
test case and just as effective.

5. Special cases and edge cases.

And when you find bugs, fix them carefully!

BUD Optimization
Bottlenecks

Unnecessary Work

Duplicated Work

Created By Gayle
Laakmann McDowell

Best Conceivable
Runtime (BCR)
BCR is the runtime you know you
can’t beat. For example, if asked
to compute the intersection of
two sets, you know you can’t beat
O(|A|+|B|).

5 Approaches
 � BUD: Look for bottlenecks,

unnecessary work,
duplicated work.

 � DIY: Do It Yourself

 � Simplify & Generalize:
Solve a simpler version.

 � Base Case & Build: Solve for
the base cases then build
from there.

 � Data Structure Brainstorm:
Try various data structures.

Do not…
 � Do not ignore information given. Info is there for a reason.

 � Do not try to solve problems in your head. Use an example!

 � Do not push through code when confused. Stop and think!

 � Do not dive into code without interviewer “sign off.”

What You Need To Know

1 Data Structures: Hash Tables, Linked Lists, Stacks, Queues,
Trees, Tries, Graphs, Vectors, Heaps.

2 Algorithms: Quick Sort, Merge Sort, Binary Search, Breadth-
First Search, Depth-First Search.

3 Concepts: Big-O Time, Big-O Space, Recursion & Memoization,
Probability, Bit Manipulation.

Exercises:

 � Implement data structures & algorithms from scratch.

 � Prove to yourself the runtime of the major algorithms.

